GMAT数学高分必备5种思维能力

2022-05-18 22:27:24

  

  中国GMAT考生在数学上是占有一定的优势的。由于GAMT数学考察的水平仅仅是我们各位考生的中学水平,所以还是比较简单的。尽管这样考生们还是不能放松警惕,通往高分的道路上需要大家时时注意。今天就来看看什么样的思维能力是在数学考试中所需要的吧!

  GMAT数学是最简单的一部分,因为它对知识点的考察只是我们的中学的水平,那么这些简单的GMAT数学考试每一位考生GMAT数学满分信心满满,那么下面小编就为大家介绍一下有关GMAT考试的5种思维能力,希望对大家的GMAT数学满分有所帮助。

  以下便是有关GMAT数学考试的5中思维能力,请大家在GMAT考试备考中注意。

  GMAT数学思维1.换元思想

  换元法又称变量替换法,即根据所要求解的式子的结构特征,巧妙地设置新的变量来替代原来表达式中的某些式子或变量,对新的变量求出结果后,返回去再求出原变量的结果.换元法通过引入新的变量,将分散的条件联系起来,使超越式化为有理式、高次式化为低次式、隐性关系式化为显性关系式,从而达到化繁为简、变未知为已知的目的.

  GMAT数学思维2.数形结合思想

  数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,形象性,使问题化难为易,化抽象为具体.

  通过“形”往往可以解决用“数”很难解决的问题.

  GMAT数学思维3.转化与化归思想

  所谓转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而达到解决的一种方法.一般总是将复杂的问题通过转化为简单的问题,将难解的问题通过变换转化为容易的问题,将未解决的问题变换转化为已解决的问题.

  转化与化归的思想方法是数学中最基本的思想方法.数学中一切问题的解决都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现.各种变换法、分析法、反证法、待定系数法、构造法等都是转化的手段.所以说转化与化归是数学思想方法的灵魂.

  GMAT数学思维4.函数与方程思想

  函数思想指运用函数的概念和性质,通过类比、联想、转化、合理地构造函数,然后去分析、研究问题,转化问题和解决问题.方程思想是通过对问题的观察、分析、判断等一系列的思维过程中,具备标新立异、独树一帜的深刻性、独创性思维,将问题化归为方程的问题,利用方程的性质、定理,实现问题与方程的互相转化接轨,达到解决问题的目的.

  GMAT数学思维5.分类讨论思想

  所谓分类讨论,就是当问题所给的对象不能进行统一研究时,我们就需要对研究的对象进行分类,然后对每一类分别研究,得出每一类的结论,最后综合各类的结果得到整个问题的解答.实质上分类讨论是

  “化整为零,各个击破,再积零为整”的策略.

  分类讨论时应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.”

  换元思路,数形结合思路,转化与化归思路,函数以及方程思路以及分类讨论思路就是GMAC想考察的五大GMAT数学思维,可以看出,虽然题目本身的难度不大,但是对于基本思维的方式的考察却非常的全面,最后祝大家都能考出好成绩。

  以上便是小编为大家搜集的有关GMAT数学考试的5中思维方式,希望对大家的GMAT数学满分有一定的帮助,只要大家在GMAT考试备考中稍稍注意,相信GMAT数学满分一定是我们志在必得的。

相关推荐:

考试安排